设为首页
收藏本站
开启辅助访问
切换到窄版
登录
注册会员
首页
Home page
专题
Special Topic
实战案例
case
法规业界
industry
实验室
lab - EMC Lab
服务项目
关于
about EMC.wiki
社区
EMC技术社区 - 电磁兼容技术社区
搜索
搜索
EMC工程师
RF无线
GJB国军标
SRRC型号核准
汽车电子
可再生能源
有源医疗器械
证书查询
标准查询
资质查询
认证机构
电容单位换算
RF单位换算
RC Filter滤波器
LC filter滤波器
波长与频率计算
全球电压频率查询
医疗器械注册检验
EMC测试
我们优势
版权隐私
投稿激励
能做什么
商务合作
客户评价
联系我们
网站帮助
法规标准
EMC&RF
安规
消费类
医疗器械
汽车电子
国军标
EMC基础
基础知识
经典电路
PCB
滤波器
辐射发射
ESD静电
实战案例
普通产品
医疗器械
其它类
互助交流
一问一答
仿真设计
实验室
EMC
安规
仪器保养
体系文件
链接5
链接6
本版
文章
帖子
用户
EMC技术社区
»
社区
›
标准与测试认证
›
汽车电子 - 标准法规与认证
›
《智能驾驶之激光雷达算法详解》激光雷达 +IMU组合定位 ...
返回列表
发新帖
《智能驾驶之激光雷达算法详解》激光雷达 +IMU组合定位
[复制链接]
183
|
0
|
2024-10-14 13:40:34
|
显示全部楼层
|
阅读模式
马上注册,结交更多电磁兼容工程师,享用更多功能,让你轻松玩转社区。
您需要
登录
才可以下载或查看,没有账号?
注册会员
×
激光里程计算法,仅凭激光点云估算激光雷达的运动状态,其精度显著受激光点云质量波动影响。IMU(惯性测量单元),作为广泛应用于机器人及汽车领域的传感器,集成了陀螺仪与加速度计,能精确捕捉并输出被测物体的角速度与加速度信息,进而通过积分运算推算出其在一定时间内的姿态与位置变化。然而,IMU在实际运作中易受多种干扰因素影响,尤其是加速度计的误差会随时间累积,导致导航精度下降。因此,常需借助外部信息融合策略,以强化IMU的定位精度。鉴于激光里程计依赖低频的环境感知进行定位,而IMU则通过高频的自身运动状态积分进行位姿估计,两者在功能上存在天然的互补性。众多学者因此致力于将激光里程计与IMU相结合,以实现高精度、实时性的定位。根据融合方式与原理的不同,这一领域的研究被细化为LiDAR+IMU松耦合与紧耦合两大方向。
激光雷达与IMU的松耦合定位策略,巧妙融合了激光里程计与IMU航位推算技术。两者独立运作,依托卡尔曼滤波、粒子滤波等先进框架,实现精准信息融合,最终精确输出定位结果。2019年,国助科技BXue团队创新性地提出IMU-AHFLO算法,该算法凭借点线特征或点云分布特征匹配的激光里程计,捕捉车辆在两帧点云间的位姿变化,随后,高频IMU数据携手车辆运动学方程,预测上述时刻的位姿变迁,最终,卡尔曼滤波器精准估算车辆新姿态。南昌大学的廖杰华则另辟蹊径,将LOAM算法与自适应粒子滤波技术巧妙结合,专为无人物流小车打造室内定位新方案。而Google的Cartographer算法,更是以分层优化为核心,前端运用无迹卡尔曼滤波器实现2D激光雷达与IMU数据的无缝融合,后端则聚焦于子地图构建与优化,辅以分支定界法,显著加速闭环检测,确保定位系统的高效与精准。
激光雷达与IMU的紧耦合定位技术,相较于松耦合方式,显著减少了信息损失。这一创新方法将激光雷达与IMU数据融合于同一位姿优化问题中,实现了更为精准的位姿估计。紧耦合定位策略可细化为基于滤波器与平滑优化两大流派。基于滤波器的方法,在状态更新中无缝整合多源传感器数据,如H. Sebastian等先驱者利用自适应扩展卡尔曼滤波器,成功将3D激光雷达与GPS/INS融合,赋能无人小车室外精准导航。然而,滤波器固有的线性化近似与递推机制,随时间推移易累积误差,影响长期定位精度。为克服此局限,香港科技大学机器人与多感知实验室的C. Qin团队在ICRA 2020上隆重推出LINS算法,该算法采用迭代误差状态卡尔曼滤波器,深度融合激光雷达与IMU数据,通过持续校正系统状态误差,实现了车辆实时、高精度的定位与建图,为紧耦合定位技术树立了新的里程碑。
登录/注册后可看大图
MU-AHFLO 算法:聚焦于LDAR+IMU融合策略中极具代表性的IMU辅助高频LDAOdmery(简称MULAHFLO)算法,深入其量测与融合机制。相较于紧密耦合方案中复杂的IMU预积分与因子图等理论框架,基于EKF的长时耦合模型展现了其简洁性。为深化理解,本节将细致剖析wXur等人在MULAHFLO算法中的公式推导精髓。核心目标是融合IMU与激光雷达数据,以精准捕捉车辆的实时位姿信息。为此,首要任务是明确求解流程中不可或缺的三个坐标系定义,具体构建如图12-1清晰展示。此步骤为数据融合奠定了坚实的理论基础,确保后续处理能够精准无误地跨越不同坐标空间,实现高精度的位姿估计。
IML-AHFLO算法:聚焦于IML-AHFLO算法,深入剖析了IMU与LiDAR如何通过卡尔曼滤波框架实现松耦合定位的精妙机制。鉴于IMU与LiDAR在车辆位置计算上的原理迥异,其失效模式亦不相同,因此,二者的融合策略巧妙地弥补了各自的不足。具体而言,鉴于IMU/轮速计数据的高频特性与激光里程计的低频特性,IML-AHFLO算法巧妙地利用IMU/轮速计数据结合车辆运动状态方程,对车辆位置进行前瞻预测,并借助激光里程计的输出作为观测依据,最终通过卡尔曼更新流程,精准地估算出车辆的后验状态。然而,此松耦合策略虽原理简明且易于实现,但在高效利用IMU与LiDAR数据方面略显不足,且IMU测量误差的累积效应可能削弱算法精度,此时,IMU与LiDAR的紧耦合定位策略便显得尤为重要。
WO-SAM算法:由麻省理工学院T.Shan等人在2020年匠心独运的杰作。LIO-SAM旨在依托因子图优化框架,实现激光雷达、IMU与GPS的实时、稳定且高精度的融合定位,其开源代码已在GitHub上开放共享。为深入理解该算法,我们需先掌握因子图优化与IMU预积分技术的基础理论,随后再逐步揭开LIO-SAM算法的神秘面纱。
因子图优化:因子图,这一无向概率图的杰出代表,源自Kschischang等人在信道编码领域对Tanner图、Wiberg图等模型的深刻洞察与创新。因子图以其独特的因式分解能力,将复杂系统的全局函数拆解为多个简洁的局部函数乘积,并通过“和-积”算法清晰地勾勒出系统状态变量间的信息传递脉络。在统计推断、译码编码、实时定位等多个领域,因子图均展现出广泛的应用价值。其结构由变量节点与因子节点构成,二者通过无向边紧密相连,共同编织出系统状态的精密网络。在SLAM领域,因子图更是以其独特的优势,助力我们更高效地解析与定位复杂环境。
另外最近部门招聘,要求如下:
内外饰数字模型工程师
1、负责内饰全仓数字模型设计工作
2、对内饰零部件有充分了解、IP、门板、console等零部件
3、负责内饰IP、门板、座椅、console、顶棚、立柱等零部件的设计工作
4、掌握内饰零部件之间的配合关系,并完整表达设计意图。
要求
1、大专及以上学历,艺术设计、工业设计相关专业
2、熟练使用ALIAS软件
3、 测试A级至少5-8年实际CAS、A面设计工作经验 测试B级至少3-5年CAS、A面设计工作经验
4、善于团队合作、有责任心、敢于担当、工作主动积极
电磁兼容网 - 电磁兼容定制方案 www.emc.wiki - 欢迎您的技术讨论!
广州EMC测试、整改、认证优惠,来电告知来自电磁兼容网客户一律有折扣!!!
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
显身卡
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
注册会员
本版积分规则
发表回复
回帖后跳转到最后一页
jinchanchanwaji
27
主题
0
回帖
27
积分
新手上路
新手上路, 积分 27, 距离下一级还需 23 积分
新手上路, 积分 27, 距离下一级还需 23 积分
积分
27
加好友
发消息
回复楼主
返回列表
EMC & RF标准法规与认证
Safety - Energy标准法规与认证
消费&工业类电子 - 标准法规与认证
委托测试 - 摸底测试
汽车电子 - 标准法规与认证
医疗电子 - 标准法规与认证
GJB & MIL产品 - 标准法规与认证
其它标准法规与认证