东莞北测检测关于SAR的研究热点解读
SAR研究热点之一:新体制论证 SAR系统设计追求的目标:图像质量高(空间和辐射分辨率高),成像幅宽大,具备多模式(扫描、可变入射角条带、斜视、聚束)、多波段、全极化、三维成像、动目标检测与成像能力,对平台运动姿态变化的适应能力强。为此,SAR平台必须安装精密的导航和姿态测量系统(GPS/INS/IMU),多平台之间必须采用精密的时间同步设备(如原子钟、GPS授时等),SAR系统必须采用全极化相控阵天线(灵活的波束扫描能力、大功率合成能力和良好的鲁棒性)、采用极高频率稳定度的振荡源、增大发射信号带宽(有时必须采用子带合成)、多通道同时接收处理,以及与系统设计相适应的灵活、稳定、实时性强的成像与图像处理算法。新系统设计中的三大同步(时间、空间和相位)、波位设计、性能指标分析和各种误差源的影响分析等是研究热点·SAR从发明至今,from strip mode,to spotlight and scan mode,分辨率的提升带来很多系统硬件、成像算法的不断改进和发展。单极化至全极化,同样也影响着SAR硬件不断更新换代。此外,用户对SAR系统的稳定性和定量特性要求越来越高,也促使SAR不断增强变壮。 SAR研究热点之二:新体制和特殊应用条件下的成像在一些新体制SAR、小平台(如无人机)SAR、大斜视应用(如弹载)条件下的成像算法,常常遇到以下情况:(1)由于分辨率的提高或/和成像幅宽的增大,方位和距离的耦合不再能够忽略,算法的实时性也经受考验;(2)小平台的运动补偿困难,难以连续获得满足质量要求的图像;(3)大斜视角工作,距离走动需要精确补偿,图像质量难以保证;(4)为了减小算法运算量,减小成像算法对平台姿态稳定性的依赖,或者滤除相干斑,需要采用时域/频域子孔径成像算法;(5)在缺乏可用的雷达平台运动传感器数据时,必须采用基于实测数据参数估计的自聚焦算法;(6)适用于超高分辨率成像的子带合成算法;(7)InSAR的基线估计与相位解缠;(8)不规则飞行路径下的双/多基地SAR成像;(9)工程化算法与实时成像处理器设计。实时成像,实时显示,实时数据传输等一系列高要求高水准的SAR特征,促使SAR不断向更高层次研究。不仅,无人机将会自带SAR系统,并根据GMTI技术实现自动目标识别,自动实时打击目标。也许这就是未来战争的可怕之处,没有军队的来到,来到的却是一群戴着导弹的无人机。。。。
SAR研究热点之三:图像处理
相干斑抑制,图像增强,几何校正,数字高程图(DEM)生成,像素点定位(有地面控制点和无参考点两种),辐射/极化定标,目标检测,特征提取(民用需求广)与识别(军事需求广),多传感器图像融合(多波段、多极化SAR图像的融合,SAR图像与光学图像的融合),等等。SAR图像的质量评估也是一大难点。如果说前两个属于系统级、硬件级、成像级,那么这个阶段则属于后续图像处理,用户使用前的阶段。主要在民用会大展宏图,如遥感图像的优化,灾害目标的提取等等。 SAR研究热点之四:运动目标检测与成像
SAR的军事应用迫切需要解决地面慢速运动目标的检测与成像问题。难点:目标非合作运动,强杂波背景。两类主要方法:单通道SAR系统采用基于运动目标参数估计的检测与成像(也可以采用邻近单元杂波对消,但效果不好),多通道SAR系统采用基于杂波对消的运动目标检测与成像(DPCA、STAP)。运动目标的精确定位困难。
SAR研究热点之五:ISAR运动补偿与成像
四类典型目标:飞机、舰船、弹道导弹和太空飞行器。目标的非合作运动给运动补偿带来困难。并非所有运动姿态的数据都能进行成像,需要进行数据选择。多目标的成像是一大难点。前不久看了月球照片,才知道原来月球的SAR图像是通过地球上(貌似是世界上最大的一个坑,一个大半圆形的坑,是一个巨型雷达)的雷达成像,采用的原理就是ISAR
SAR研究热点之六:SAR的干扰和抗干扰
干扰样式主要有噪声干扰、相干干扰(用侦察到的雷达信号参数和待保护区域的散射强弱分布构造响应的场景分布来产生)和复合干扰(噪声干扰和相干干扰的复合)三种。SAR的抗干扰技术主要有低截获概率波形设计、重频和载频捷变、空域自适应干扰对消三类。SAR系统的抗干扰效果评估也是一大难点,主要考虑干扰样式对图像质量的影响,干扰设备对SAR发射信号参数捕获和实施干扰的难度不予考虑。 这些年从事和SAR图像的工作,知道的东西也渐渐增多,如果说SAR是一项技术,可以;如果说SAR是一项科学,也可以;可以简单理解成一个二维矩阵;再可以扩展理解成多维的二维矩阵;也可以理解成地物与微波作用后的结果显示;更可以理解为一群数字经过这样那样折腾而出来的图像;当然,它是雷达产物,更是传感器与目标之间存在相对运动而形成的特定成像手段。
原文地址:http://www.ntek-test.com:lol:lol:lol:lol:lol
页:
[1]